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A Novel Approach to Theories of Polymer Coils in 
Good Solvents 

TEJRAJ M. AMINABHAVI* and RAMACHANDRA H. BALUNDGI 

Department of Chemistry 
Karnatak University 
Dharwad 580003, India 

A B S T R A C T  

A new theory is proposed involving a short-range interaction 
parameter,  N which allows for finite chain effects. The param- 

eter z, which was originally suggested by Yamakawa, is redefined 
to make it applicable to finite chains. The dependence of intrinsic 
viscosity on molecular mass  as predicted by most of the acknowl- 
edged theories of polymer solution seem to be incompatible with 
the Mark-Houwink-Sakurada relation. This makes the evaluation 
of interaction parameters from viscosity data difficult. Therefore, 
an attempt is made here to show that these theories contain some 
basic assumptions (and/or mathematical simplifications) which 
may lead to erroneous conclusions. 

0’ 

I N T R O D U C T I O N  

The intrinsic viscosity, [q] , of a polymer solution depends both on 
hydrodynamic and thermodynamic factors. Traditionally, a polymer 
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78 AMINABHAVI AND BALUNDGI 

molecule may be characterized by an equivalent hydrodynamic radius, 
which depends on the size,  shape, and distribution of mass  within the 
polymer coil as well as its hydrodynamic permeability. If, for a class 
of systems, the coils a r e  hydrodynamically impermeable, and the 
shape and distribution of mass a re  the same, then the ratio between 
the hydrodynamic radius and the end-to-end distance, r, is the same 
for all members of that class. Simple analysis then shows that 

where M is the molecular mass of the polymer and + is a parameter 
which depends on the hydrodynamic factors (except r) and is a con- 
stant for the class. The linear polymers dissolved in pseudo-ideal 
theta-solvents form such a class. In this case, the parameter 9 be- 
comes $o = 2.87 X loz3 ( [ q ]  in L/kg), and r has an “unperturbed” 
value r Equation (1) may now be transformed into 0’ 

[17Ie = +0(r~/M)3’2M1’2 = KOM”’, 

where Ke = + ( r  2/M)3‘2. The parameter of unperturbed dimensions, 
r;/M, and the constant, Ke, depend on the chemical structure and 
stiffness of the macromolecules in addition to the temperature and 
the nature of the solvent. Experimentally, it has been shown [l, 21 
that the ratio [q] O/M1’2 is very nearly independent of molecular 
mass down to very low molecular masses. In good solvents the 
polymer-polymer contacts are favored less  than in the case of theta- 
solvents. Consequently, the end-to-end distance, r, is larger than 
ro, and thus aR = r/ro is greater than unity. The distribution of 
polymer segment densities and parameter 9 may also differ. Custo- 
marily, the parameters for a pseudo-ideal coil are factored out from 
Eq. ( 1)) which is written in a form similar to Eq. ( 2 )  as 

0 0  

where the viscosity expansion coefficient cy = (+/+o)( r/r0)’. 17 
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POLYMER COILS IN GOOD SOLVENTS 79 

Experimentally [3], most of the polymer-solvent systems obey the 
empirical two-paramete r Mark- Houw ink- Sakurada ( MHS) relation 

which may be rearranged to 

[q]  = KBM"2(M/MOj- a (112) 

where the definition of the characteristic mass, Mo, is obvious from 
a comparison of Eqs. ( 4 )  and ( 5). Most experimental data follow Eq. 
( 4 )  quite closely in the region of molecular masses that are a t  least 
several times higher than M (Mo = 5000 g/mol for polystyrene and 
poly(methy1 methacrylate)). In a previous study [l] i t  has been shown 
that the parameter Ke can be calculated from the values of K and - a by 
using the assumption that the characteristic section of a macromole- 
cule with mass Mo always contains the same number of statistical seg- 
ments. If the validity of Eq. ( 4 )  is accepted, then the exponent 5 be- 
comes a single parameter characterizing the particular polymer- 
solvent system; it increases with the thermodynamic quality of the 
solvent. However, the physical significance of the parameter - a is not 
obvious. 

0 

T H E O R E T I C A L  

Most theories of polymer solutions model the polymer coil as a 
string of connected statistical segments. In the reference "unper- 
turbed" state, the segment positions correspond to a random walk 
problem. One group of theories [2] describes the coil by means of 
the distribution function of all intersegmental distances. The differ- 
ence between the real and the reference distribution function is 
treated as a perturbation, which is characterized by the binary cluster 
integral P. Another group of theories [4] treats the coil as a cloud of 
unconnected segments (the smoothed segment density model) which 
are subject to osmotic forces and a re  characterized by the familiar 
Flory-Huggins parameter x. 

mathematical problem, and all the standard theories employ some 
simplifying assumptions. In this paper an attempt will be made to 
show that some of these assumptions may influence the final results 
significantly. It can be shown that the distribution function of the 

The exact statistical analysis of the segment model is a formidable 
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80 AMINABHAVI AND BALUNDGI 

intersegmental distances in the random-walk problem is almost in- 
distinguishable from the Gaussian distribution when the two segments 
are separated by a sufficiently large number of links [5] ; ten links 
already give an excellent fit. Moreover, the same Gaussian distribu- 
tion is obtained when the single segment-segment link itself is re- 
placed by a Gaussian distribution of distances. The introduction of 
the Gaussian distributions significantly simplifies the mathematical 
analysis. Nevertheless, it represents a rather poor approximation 
for segments which are separated by only one o r  a very few links. 

In the real  chains, two problems arise: (1) two segments cannot over- 
lap creating the excluded volume and (2)  intersegmental contacts may be 
favored by a Boltzmann factor related to interaction energies. These ef- 
fects are formally taken into account by introduction of a potential of 
mean force and the binary cluster integral, 6, which represent the bal- 
ance of the s ter ic  and interaction factors. For a special case p = 0, the 
probability of finding a segment in close vicinity of another segment 
is the same as if these real chain effects were absent; the coil is 
believed to behave in a Gaussian fashion. In a general case P # 0, 
the perturbation of the Gaussian coil is calculated a s  a function of P 
and of the number of links N. 

In a standard approach originally due to Fixman [6] , the perturba- 
tion of the end-to-end distance is calculated as a sum of terms which 
are related to single o r  multiple contacts within a coil. Each con- 
tact is characterized by the same value of 6. The probability of two 
segments making a contact is derived from the Gaussian statistics 
of intersegmental distances. The results are written as 

aR2 = 1 + c l z  - c2z2 + c3z3 - . . 
z = (3/271b' )3/2 /3N"2, 

N N  
c = N-3/2 ( l - k ) - 1 ' 2 ,  

k=O l=k+l 
1 

where b is the mean square length of a Gaussian link between adja- 
cent segments and (1 - k )  is the number of links between two inter- 
acting segments. The standard analysis then calls for a conversion 
of the sums to integrals and their evaluation in the limit of very large 
N. After evaluation [2] of the constants Ci, Eq. (6)  can be written as 

QR2 = 1 + ( 4 / 3 ) ~  - 2.072' + 6 . 4 5 9 ~ ~  - * - - . ( 9 )  

The expansion factor for  intrinsic viscosity, a ' , was calculated 
17 

by Yamakawa and Tanaka [7]. Their calculations were very involved, 
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POLYMER COILS IN GOOD SOLVENTS 81 

and only the linear term was evaluated numerically as 

LY = 1+ 1.06~ - . ( 10) 
rl 

According to this treatment, the expansion factors ffR and CI are 
unique functions of the parameter z. This result is incompatible 
with the expression for ff ' derived from the MHS relation, Eq. (5): 

17 
(1) The MHS relation cannot be expanded into a power series of z, 
i.e., in powers of M1/'. ( 2 )  The dependences of LY ' on M1'2 for dif- 
ferent solvents with different exponents a cannot be reduced to a 
single master curve. Therefore, fur ther  analysis of the assumptions 
underlying the standard perturbation treatment and the mathematical 
simplifications involved is indicated. 

is satisfactory only for values of N that a re  much larger than values 
ordinarily of interest. We have transformed Eq. (8)  into an equiva- 
lent equation, namely, 

77 

77 

The evaluation of the double sum in Eq. (8)  as a limit of an integral 

N 

which was then evaluated by a computer a s  a function of N. It was 
found that C1 can be represented to a very good approximation by 
the relation 

where No = 1.2. Inspection of the sum in Eq. (8)  shows that the con- 
tacts between the adjacent and/or close segments contribute heavily 
to the sum for all values of N which a r e  of interest. 

Immediately the question arises: Is the contribution of these con- 
tacts evaluated properly? The Gaussian model assumes that the ad- 
jacent segments a re  frequently in contact, while the random-walk 
model (with steps of constant length b)  implies that they are never in 
contact. Similar discrepancies exist even for close nonadjacent seg- 
ments. The probability of contact between them may be severely re- 
duced by s ter ic  constraints. This behavior can be formally taken into 
account by assigning to adjacent and close segment pairs a smaller 
(absolute) value of P or ,  for greater simplicity, a zero value. The sum 
in Eq. (11) was evaluated by assigning P = 0 to contacts with the f i r s t  
j, neighbor segments. The sum is again approximated by Eq. (12). 
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82 AMINABHAVI AND BALUNDGI 

TABLE 1. Dependence of Parameter No on the Number of Neighbor- 
ing Segments for which Contacts Are Neglected 

j0 NO 

0 1.20 

1 3.40 
2 5.63 
3 7.87 

4 10.10 

1.5 

c1 

1.0 

0.5 

0.0 

6 

1 3 10 30 100 300 1000 
N 

FIG. 1. Dependence of the factor C1 on the number of segments N 

for several values of j,. Full lines represent the exact values of the 
sum in Eq. (11); broken lines represent Eq. ( 12). The horizontal 
broken line is the limiting value for very large N. The upper scale 
represents molecular masses,  M (assuming a segment molecular 
mass of 500 g/mol). 
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POLYMER COILS IN GOOD SOLVENTS 83 

The value of No as a function of j, is given in Table 1, and C1 is 
plotted as a function of N for several  values of j, in Fig. 1. The cor- 
rection term (NO/N)”’ is by no means negligible: for N = 200, i.e., 
for a typical polymer, with a segmental molecular mass of 500 g/mol 
and a molecular mass of 100 kg/mol, it represents 8% of the value of 
C1 if  no contacts are neglected and 22% if four neighbors are neglected. 

Substitution of Eqs. (7)  and ( 12) into Eq. (6) yields 

aR2 = 1 + (4/3)( 3/2nb2)’” P(N’” - No1‘’ ) - * * * . (13) 

Equation ( 13) impelled us to redefine the parameter z as 

where the parameter N characterizes short-range interactions. 
With the new definition of z, Eq. ( 9 )  is recovered a t  least up to the 
linear term. We believe that use of the redefined parameter z is 
similarly justified in Eq. (10). 

The expansion factor (Y ’ from Eq. (5) may be expanded into a 
s imilar  series: 

0 

77 

1 /2  )/Mo1/2 ,2a- 1 
MO 

= [ I  + ( M 1 l 2  - 

Realizing that M/Mo = N/NO, we may compare the linear terms in 
Eq. (15) with the combined Eqs. (10) and (14) to obtain 

This treatment shows that the parameter of short-range interac- 
tion No, which was originally introduced by the phenomenological 
analysis of the MHS relations in several solvents, fits quite naturally 
into the structure of the perturbation theory of polymer coils. The 
experimental value [3] of No = 9 corresponds to an effective j, equal 
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84 AMINABHAVI AND BALUNDGI 

to about 3.5. The modified theory is now compatible with the MHS 
relation, a t  least in the region of small expansion. 

The treatment described above (both in its original and presently 
modified form) leads to the ser ies  in Eqs. ( 9 )  and ( lo),  which con- 
verge very slowly. The mathematical complexity in the calculations 
of higher coefficients increases rapidly. Consequently, the series is 
useful, at  best, for values of ff 

of the pseudo-ideal theta conditions. For the larger expansions of the 
polymer coil, a number of approximate theories has been proposed 
[2]. Their predictions differ greatly, but they have one factor in com- 
mon: They predict the existence of a master curve of ffR2 a s  a func- 

5 1.2, i.e., only in the closest vicinity R 

tion of the z coordinate. This is again in contradiction to the MHS re- 
lation. It is possible that some of the theories, when modified by the 
introduction of the redefined z parameter, may describe the experi- 
mental data quite satisfactorily. In the meantime, however, we feel 
that none of them a re  reliable enough for a meaningful analysis of the 
experimental data. 

The theories, including that of Flory and Fox [8],  use the smoothed 
segment density model to calculate the expansion factor from the con- 
dition that the contribution of a single coil to the free energy of the sys  
tem be minimum. The free energy is calculated as a sum of an elastic 
(entropic) term and a contact term. The entropy term is based on the 
statistics of the Gaussian coil, while the contact term i s  evaluated for 
a cloud of unconnected segments. The density of segments is taken to 
be the average density over all configurations, i.e., to an appropriate 
Gaussian function with spherical symmetry. The contribution of each 
volume element within the coil to the total contact term i s  calculated 
by assuming the validity of the Flory-Huggins theory for these volume 
elements. In this treatment, there is no difference between various 
types of expansion factors; the symbol ff is used for all of them. The 
result of Flory and Fox [8] is 

ff5  - (Y3 = 2CM( 1 - x)M’’’ , 

where CM is a geometrical factor depending only on the unperturbed 
dimensions of the polymer, (rO2/M), and on the molar volume of sol- 
vent. The right-hand side of Eq. (17) may be shown to be proportional 
to the parameter z :  a single master curve is again expected for all 
polymer good-solvent systems. Moreover, the dependence of log [q] 
on log M is expected to be curved, with the limiting slope equal to 0.8 
for a polymer of infinite molecular mass in good solvents. Conse- 
quently, this model is  also incompatible with the MHS relation. 

The smoothed density model predicts that, within a single coil, the 
number of polymer-polymer contacts per  segment decreases with in- 
creasing molecular mass ( -M-”’ ), i.e., the probability that any 
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POLYMER COILS IN GOOD SOLVENTS 85 

given segment is in contact with other segments is less for polymers 
with high molecular mass than for those with low ones. This is in 
contrast with the more sophisticated chain model; as we have seen 
above, the probability of a segment making a contact is the sum of 
probabilities of contacts with the first, second, third, etc. neighbors. 
In the Gaussian ( o r  pseudo-ideal) case, the segment of a macromole- 
cule has the same probability of being in contact with its not-too-far 
neighbors as has the segment of a short molecule. Furthermore, it 
has a chance of being in contact with some distant segment. Of course, 
there a re  no distant segments in short molecules. Thus, the number 
of contacts per segment probably increases with increasing molecular 
mass. Consequently, the smoothed density model seriously distorts 
the dependence of the contact term and of the expansion factor on 
molecular mass. 

There is also a difficulty with the value of the parameter x. The 
treatment of Orofino and Flory [9] takes into account a possible de- 
pendence of x on the concentration of the polymer. However, it is 
implicitly assumed that x is independent of molecular mass. A s  x 
is found experimentally to be strongly dependent on M, it is not ob- 
vious how to select a value of x applicable to the smoothed density 
model. 

CONCLUSIONS 

The standard perturbation theory of a polymer coil evaluates the 
probability of a segment-segment contact within a coil by using an 
expression which is extrapolated to an infinite number of segments. 
By this procedure, a correction term (N0/N)l" is neglected which 
is significant for all molecular masses ordinarily of interest. Its 
omission distorts the predicted dependence of the expansion factor 
on molecular mass. 

contacts between segments. A modification of the model of the coil 
is proposed in which the contacts of a segment with j, (up to 3 and 4) 
neighboring segments are not taken into account. Such a modification 
results in an increase in the No value in the correction term. 

that the dependence of the expansion factor on molecular mass pre- 
dicted by the standard perturbation treatment (Eqs. 6, 7, and 10) is 
incompatible with the dependence described by the MHS relation, Eq. 
(5). It is, therefore, proposed that a partial remedy may be achieved 
by redefining the parameter z (Eq. 14). This redefinition implies the 
existence of a new short-range interaction parameter, No, which cor- 
responds to a section of the polymer chain with molecular mass MW 
Furthermore, the MHS relation is also incompatible with theories 

The Gaussian model predicts an unrealistically high frequency of 

In view of the neglect of such asignificantterm, it is not surprising 
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86 AMINABHAVI AND BALUNDGI 

based on the smoothed segment density model. The failure of the latter 
is due to the fact that ( 1) the smoothed density model predicts that the 
number of contacts per segment is proportional to M-"', while the ran- 
dom-walk treatment predicts that the number of contacts per segment 
is increasing with M; and (2 )  the Flory-Huggins interaction parameter,  
x, which describes the thermodynamic behavior of polymer solutions, 
is assumed to be applicable within a single coil and to be independent 
of molecular mass. 

In view of the foregoing facts, we believe that the present state of 
theories does not justify attempts to evaluate the interaction param- 
e te rs  from experiments by using either perturbation theories o r  the 
smoothed segment density model. It is, therefore, suggested that the 
three parameters of the MHS relation can be interpreted as follows: 
K and M are short-range interaction parameters and 5 is a single 
parameter related to the contact interactions. 
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